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The propagation upward of the shock wave from 
a strong explosion in the atmosphere 
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A method is established for the calculation of the trajectories of shocks moving 
upward in the atmosphere, on the basis of the assumption that they are of the 
self-propagating type. The results of calculations for self-similar motions are 
given, and these are used to establish a propagation law based upon the con- 
cepts of the Chisnell, Chester and Whitham (CCW) approximation. This propaga- 
tion law enters a characteristics law based upon that proposed by Whitham, 
but reformulated for the computation of axisymmetric shocks with varying 
density. 

An asymptotic self-preserving shock shape is investigated, and is computed 
for the case y = 1.4. A parabolic approximation scheme suggested by the self- 
preserving solution is developed, in which the solution near the axis is reduced 
to the solution of a system of ordinary differential equations. Finally, the 
governing equation for the general case without axial symmetry (but without 
winds) is presented. 

1. Introduction 
One of the problems encountered in the study of strong explosions in the 

lower atmosphere is that of computing an estimated time history of the shock 
wave, in particular as it travels upward into the ionosphere. Greatly simplified 
calculations (Bompaneets 1960; Andryankin et al. 1962) indicate that a strong 
explosion will ‘vent’ into the vacuum at infinite height within a finite time, and 
this conclusion is reinforced by an accurate theory (Raizer 1964) for one- 
dimensional strong shock propagation in an exponential atmosphere. 

An explosion of moderate strength at  moderately low altitude generally 
reaches a stage at  which the shock is weak and the propagation is close to acoustic. 
The weakening of the shock to near-acoustic conditions is largely a consequence 
of the geometric divergence of the propagation rays, with the attendant increase 
in area of a ray tube. The parts of the shock wave that propagate upward pass 
into regions of ever-decreasing density, and this effect results in a strengthening 
of the shock. After the shock has traversed a couple of scale heights upward in 
the atmosphere, this effect overrides that of geometric divergence, and the shock 
can again become a strong one asymptotically. This strong shock must follow 
approximately the laws given by Raizer (1964) with errors arising from the 
non-uniformity of composition and scale height in the atmosphere and from the 
three-dimensionality of the shock shape. 
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We can distinguish two fairly distinct cases: (i) the case of a sufficiently weak 
explosion a t  sufficiently low altitude, and (ii) the case of a sufficiently strong 
explosion at sufficiently high altitude. In  case (i) the propagation mechanism is 
basically that of Raizer; no material from the heart of the explosion is vented 
into space, and the main result of the venting of the shock surface into space is 
the establishment of a current of heated air upward. In  case (ii) the propagation 
mechanism is basically that of Kompaneets and Andryankin et al. with obvious 
adjustments for the limitations of the models; the bulk of the material from the 
heart of the explosion is vented into space in this case. In  the present report we 
are concerned exclusively with case (i). 

The aim of this report is to establish a computation scheme for upward- 
travelling shocks from explosions in case (i). A direct hydrodynamic calculation 
is not very attractive, because such a calculation would be three-dimensional 
(two space dimensions plus time). We wish a simpler scheme, but one of satis- 
factory engineering accuracy. 

The shocks going upward are of the ‘ self-propagating ’ type after they have 
travelled far enough from the centre of the explosion to be accelerating. A shock 
is ‘ self-propagating ’ when its propagation is governed primarily by changes in 
the ray tube area and the gas state in front of the shock and is insensitive to 
conditions behind the shock. Such a self-propagating shock is characterized by 
the fact that a disturbance located farther than a certain critical distance (which 
should not be too great) behind the shock never catches up with the shock. Such 
a shock is also generally characterized by the fact that it is accelerating. In  the 
more general non-self-propagating case, a shock may be influenced by any 
disturbance behind it. 

An attractive approximation for the law governing self-propagating shocks is 
the CCW approximation, developed by Chisnell (1955, 1957), Chester (1954, 
1960), and Whitham (1958). This approximation corresponds to applying to 
large changes in ray tube area or in the gas state in front of the shock the rule 
obtained by integrating the rule for infinitesimal changes. The error lies in the 
neglect of all information from behind the shock, whether this be reflexion of 
waves emitted from the shock or boundary conditions imposed in the downstream 
region, Whitham’s rule for the approximation is that conditions on following 
characteristics (catching up with the shock) are to be applied immediately 
behind the shock itself, on the shock trajectory. 

The agreement shown between the CCW approximation and precise calcula- 
tions for implosions in a perfect gas has been so excellent as to be almost uncanny. 
For spherical imploding shocks and y = or #, the agreement of the character- 
istic exponent is within 0.1 %. This agreement suggests that the approximation 
might work well also for density changes as well as for area changes. Accurate 
numerical results (Raizer 1964 and Hayes 1968) show that this is not generally 
the case. With an exponential density distribution, the CCW approximation 
gives values of the characteristic exponent that are in error by about 15%. 
With a power-law density distribution (Sakurai 1960) the error is less. 

What is suggested in place of the CCW law is a shock propagation law of the 
form suggested by the CCW approximation, but with exponents taken from 
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accurate calculations of self-similar motions. The basic assumption in such a 
procedure is that of local similarity, an assumption long used in other approxi- 
mate hydrodynamic calculations, particularly for boundary layers. Physically, 
this assumption should be better for self-propagating shocks than for boundary 
layers. The shock-propagation law may be simplified on a semi-empirical basis, 
provided it clearly reduces to correct form in certain limiting cases. These 
limiting cases must include the acoustic case and the strong shock case. 

Once a satisfactory propagation law has been established, a spatial (axi- 
symmetric or three-dimensional) caIculation may be undertaken. The approach 
to be used is a modification of that of Whitham (1957, 1959), or an extension of 
that of Hayes (1963) for linear propagation. The essential feature here is that the 
geometry of the propagating shock governs the area changes in the ray tubes. 
These in turn govern or strongly influence the velocity history of the shock on 
each ray, and this history in turn governs the geometry of the propagating shock 
wave as a whole. Whitham has shown that the propagation law gives a definite 
velocity of lateral propagation of a disturbance along the shock surface, and this 
effect must be taken into account in any calculational scheme. In  the present 
problem, only axisymmetric geometries are considered, and the h a 1  compu- 
tation scheme is two-dimensional. The lateral disturbance propagation indicates 
real characteristics, and the mathematical system is hyperbolic. Either a proper 
characteristics method should be established, or a second-order derivative 
scheme that takes the existence of the characteristics into account and is stable. 

Initial conditions must be taken so that the shock is initially of the self- 
propagating type. This requires that the results of an explosion calculation be 
available, in which the calculation has been carried out far enough that an 
appreciable part of the upper part of the shock has started to accelerate (because 
of the decreasing density upward). 

We summarize the procedure as follows: (i) establish sufficient exact results 
for self-similar motions to serve as the basis for a shock-propagation law (Hayes 
1968) ; (ii) establish a satisfactory shock-propagation law; (iii) establish a scheme 
for the calculation of axisymmetric shocks; (iv) apply the scheme to cases of 
interest, starting with an established shock of the self-propagating type. 

We make a number of simplifying assumptions, primarily that there is no 
wind and that the gas is everywhere a calorically perfect gas. Neglected, of 
course, are any MHD or plasma effects. 

2. Results for self-similar motions 
The shock-propagation law desired is of the form 

(in simplified form), where U is the velocity of propagation of the shock, p is 
the density in front of the shock, and M = U/a,  is the Mach number of the 
shock (in front of the shock). The quantity 
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is a dimensionless ratio of area change to density change. If K is linear in k,  

0.25 

K = K o + K , k ,  with 

the law would take the form 

I I I I I I I 

0.50 

0.45 

0.40 

;c 

0.35 

0.30 

This form is consistent with that given by the CCW approximation. 

1968), with density and area following the laws 
Self-similar solutions with strong shocks ( M  + 00) have been studied (Hayes 

p = poe-pz, (2.5a) 

A = Aoe-kpz,  ( 2 .5b )  

where z is the altitude. In  these cases the shocks do follow a law corresponding 
to (2.1), 

The results for KO = K(0)  are given in figure 1, together with results for 
K,  = K'(0) and, for comparison, the corresponding values given by the CCW 
approximation. The plot is against the parameter y, but pIotted so that the 
scale is proportional to 2 / ( y  - 1). This choice yields smoother curves. 

In  figure 2 the variation of K with k is shown for the case y = 1.4, with parts 
of the corresponding curves for other values of y, and the straight line 0.394 
(1 + k )  which is expected to be an asymptote for large Ic. It will be observed that 
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the curve for y = 1.4 is very close to a straight line. This observation supports 
the correctness of putting the strong-shock law into the form of (2 .4 ) .  

t 1 
0 

-0.5 0 0.5 1.0 
k= pdA/Adp 

FIGURE 2. Dependence of K on k. 

3. Propagation law 
The propagation law for the shock wave is a law that gives changes in the 

velocity of the shock U under the assumption that these result only from changes 
in the density p in front of the shock, the area A of a ray tube, the undisturbed 
speed of sound a,, and the quantity * ( y+  1) for the gas. For simplicity the 
undisturbed gas is assumed to be at rest, with no winds. The parameters involved 
include parameters describing the relative magnitude of the various effects 
(such as the parameter k in (2 .1 ) ) ,  plus the Mach number M = U/am. 

The various effects are assumed to be independent, so that the respective 
terms may be separated (as in (2 .4 ) ) .  This separation leaves M (with y ,  of course) 
as the basic parameter of the propagation law. This law must serve for almost 
acoustic waves as well as for strong shock waves, over the range of M from 1 to CQ. 

In  the acoustic range, pu2Aa, is an invariant, and represents the flux of 
acoustic energy in a ray tube. Here u is the disturbance velocity, connected 
with U through the relation 

u = y-+1,+[,p,+ 4 (+)2]4 

for a perfect gas. From the invariance of pu2Aa,, we have 

du l d p  l d A  Ida ,  -- ~ - 
u 2 p  2 A  2 a , ’  

21 Fluid Mech. 32 
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while from (3.1) we have 

du d(y+l )  M2+1dU 2 dam 
U y + l  M2-1 u M2-1 a, * 

(3.3) -- - -~ +----- 

This gives the quasi-acoustic propagation law 

lap 1dA d ( y + l )  1 4 
(3.4) =- ::;:( 2 p  2 A + x + 2 ( m - ' ) 2 ] '  

This law may be altered by replacing 1 by M 2  in the coefficients without changing 
it essentially, except that the combination M 2  - 1 may not be changed. 

For a strong shock, with area A held constant, the CCW procedure yields 

with the a, term included approximately. As we have indicated, the CCW 
coefficient for density change we replace by that given by the self-similar analysis. 
We replace the ratio 

by 2, on the basis that the ratio is not too trustworthy except as giving an order 
of magnitude, and this order of magnitude is given as well by 8. We thus get a 
strong-shock propagation law 

(3.6) 

For a general Mach number, we need KO ( M )  and K,  ( M )  in a law of the form 
of (2.4), with these parameters taking the values 4 at M = 1. Here again we 
return to the CCW results for a guide, in lieu of much more extensive calculations 
of self-similar solutions. From figure 2 of Whitham (1957), an excellent fit is 
obtained through the relation 

K ,  ( M )  = K ,  + (4 - K,) M-2. (3.7) 

This law for Mach number dependency is applied to our K,, and also to our KO. 
For the other coefficient, zt fit between quasi-acoustic and strong-shock results 
is obtained by replacing the - 1 following 4 / ( M 2  - 1) in (3.4) by - M-2. 

The resulting propagation law reads 

dU M2-1 dP dA 
- = -{ - [KO + ( 8  - K O )  M-21- - [K,  + (4 - K,) M-2] A 
U 2M2 P 

This law has the correct form for both the quasi-acoustic and strong-shock cases, 
and the behaviour of the coefficients for intermediate Mach number is close to 
what may be expected on the basis of available information. 

How should the law be applied best if the gas is not a perfect gas! The para- 
meter y enters (3.8) in two ways, as a parameter determining KO and K,, and as 
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a variable in the expression d(y+ l)/(y + 1). In  both ways the effect is small in 
the quasi-acoustic range and appreciable only with M2- 1 appreciable. In  the 
effect of y as a parameter, the key quantity is the limiting Mach number behind 
a strong shock, 

for a perfect gas. If desired, a y for the purpose of estimating KO and K ,  could be 
obtained through (3.9) after calculating Ms from 

with sub s denoting conditions behind the actual shock, and 

I n  the effect of (y  + 1) as a variable, its function is through the relation 
0 
L 

1 -€l*m = __ 
Y + l  

for a perfect gas. Thus we should replace y + 1 by 

y + l = - + 1  hs 
es 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

for the purpose of simulating the effect of this variable. 

the altitude z alone. The quantity 
In  the sequel, the quantities p, a, and y + 1 are considered to be functions of 

(3.14) 

is the inverse of the classical scale height in the atmosphere, itself a function of z. 
For the purpose of simplifying the form of the propagation law, we introduce 
the following notation: 

p2 = ~ [Kl+ (8-K1)M-21, (3.16) 
M2- 1 

2M2 

M2- 1 
F(M,z )  = - 

2M2 

The propagation law then takes the form 

dA 
- p 2 T  + FdZ 

dU -- 
U -  (3.17) 

in our layered atmosphere. The quantity p(M,z )  will represent a characteristic 
slope in the sequel. 

4. Axisymmetric calculation 
Our problem is the establishment of a calculation procedure for the propaga- 

tion of an axisymmetric shock of self-propagating type upward in the atmo- 
sphere. This procedure may be of one of three types: (i) a direct calculation based 

21-2 
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upon the approach of Hayes (1963) in which the ray tube divergence D is calcu- 
lated along ray tubes. This approach does not directly utilize the characteristics 
noted by Whitham (1957), and is not chosen. (ii) A direct characteristics calcula- 
tion based upon the work of Whitham (1957), with appropriate modifications 
to take the axial symmetry and varying density into account. This approach 
seems to be the simplest and most direct. (iii) A calculation using the time t as 

r 
FIGURE 3. Shock geometry. 

the basic dependent variable, using a second-order hyperbolic partial differential 
equation in the two space co-ordinates, following Whitham (1959) with appro- 
priate modifications. This approach is not chosen, but is outlined in $7.  

A ray is a normal trajectory (with no winds) to the family of shock surfaces. 
The inclination of a ray with the vertical, or of the shock surface with the horizon- 
tal, is denoted @ (see figure 3). 

The curvature K of a ray obeys the law (Hayes 1963, equation (4.9); or 
Whitham 1957, equation (6)) 

In the axisymmetric case, we have 

ae 1 au 
uat - --tiar’ ~- (4.3) 

where a/at is a time derivative along a ray, and a/al is an instantaneous tangential 
derivative along the shock profile; el in (4.1) is a unit vector tangent to the shock. 

The divergence tensor D is a 2-2 tensor in the shock surface, essentially the 
curvature tensor for the surface. This quantity obeys the law 

(Hayes 1963, equations (5.3) and (5.4)), while the area change along a ray tube 
is given by 

‘’A t r D  
A Uat - (4.4) 
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(Hayes 1963, equation (5.2)). In  the axisymmetric case the natural axes are 
the principal axes for D, which then has principal components 

diagD = D,  - ( ,'e") 
in cylindrical co-ordinates (r,  z ) ,  with 

(4.5) 

The formula for area change, equation (4.4), then reads 

1 aA a8 sin8 dsin8 sin0 
A m =  2 + r  - dr r +- (4.7) -- 

(compare Whitham 1957, equation (5)). 
In  our chosen approach (ii) we do not use (4.3), but instead combine (4.2) and 

(4.7) to obtain characteristic equations. We multiply (4.7) by p2Udt and elimi- 
nate d In A / U d t  by means of the propagation law (3.17). We multiply (4.2) by 
dl, and add. The result is 

u at az Udt+- 
aln U 
u at 

in which the relation 8x1 U7at = cos 8 has been used. The characteristics are the 
directions along which the partial derivatives in (4.8) may be replaced by 
ordinary differentials. They are given by 

for which (4.8) gives the characteristic relations 

(4.10) 

In  this analysis 1 has essentially the function of an intrinsic co-ordinate, not of 
a co-ordinate in physical space. The differential dl is equivalent to Whitham's 
Adp ,  where /3 is a co-ordinate specifying the ray. Whitham's A is a ray tube 
area in the planar case he treats, and acts as a metric coefficient; its use is avoided 
in our analysis. 

In  applying the characteristic relations to a problem, adequate initial condi- 
tions specifying U and 8 for a given initial shock shape must be given. As men- 
tioned before, the shock initially should be known to be of the self-propagating 
type. Boundary conditions are two in number. One boundary condition is 
really a regularity condition, and is simply that 

8 = 0  on r = 0 .  (4.11) 

The other condition is imposed at the shoulder of the shock, and should be chosen 
in such a way that it interferes the least with the development of the shock over 
its main central portion. It is possible that 'shock-shocks' (Whitham 1957) may 
appear near the shock shoulder. 
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The calculation is analogous to that for an axisymmetric steady potential 
gas flow with sources (corresponding to the F term). Individual rays need not 
be kept identified, as no property is convected directly along rays. Rays may be 
obtained subsequently by integrating drldx = tan 6. Analogously, it  is not neces- 
sary to keep track of shock shape or of the time t .  Shock shapes may be obtained 
by integrating dzldr = -tan 6,  or by calculating time and exhibiting constant- 
time surfaces. 

Characteristic calculations using (4.10) have not as yet been carried out. We 
turn next to the study of a particular self-similar solution and of an approximate 
scheme suggested by the self-similar solution. 

5. Self-similar shock shapes 
A plane shock moving upward in the atmosphere may readily be shown to be 

unstable, so that planar shocks cannot exist. The question naturally arises as 
to whether curved shock shapes of stationary form exist, which can then be 
expected to represent the asymptotic shape of actual shocks in an exponential 
atmosphere. These have been investigated under the assumption that the shape 
is axisymmetric. 

The co-ordinates x and r are defined as before, and the co-ordinate x is directed 
downward from the vertex (or apex) of the shock. The upward velocity of the 
entire shock shape is Uo(t). The moving co-ordinate x is thus given by 

x = JUodt - 2. (5.1) 

With the strong-shock approximation, ,u2 = SK, and F = 8Kop. The parameters 
(y+  1) and p are considered constant. From (4.7) and (3.17) we have 

The quantity dzlUdt is replaced by cos 6. The normal velocity of the shock U is 

(5.3) 
given by u = uocose 

while the quantity (5.4) 

is assumed constant. This assumption is suggested by the solutions of the 
preceding paper of Hayes (1968). 

The result of substituting (5 .3)  and (5.4) into (5.2) with the relation 

dr = sinBUdt, (5.5) 

is the ordinary differential equation 

+K,-tan26dtan6 1 tan6 1 
1+tan28 dpr +-K1--- 2 pr 2 KO + a-l( 1 + tan2 8) = 0. (5.6) 

The boundary condition at pr = 0 is that tan 6 = 0 there, and that the solution 
be regular. There is a critical point at tan 6 = (+Kl)&, and the second boundary 
condition is that the solution pass through a saddle point there. This condition 
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determines the correct value of a. Solutions that do not pass through a saddle 
point do not have both /3r and tan 8 increasing monotonically. 

This equation has been solved numerically for the case 

y = 1.4, with +K, =0-207 and $KO = 0.183. 

/3r 

FIGURE 4. Self-similar shock shape (y  = 1.4). 

It was found that a-l= 0.1269 for this case. The self-similar shape obtained is 
given in figure 4, with ,Ox obtained from the relation 

It turns out to be close to a paraboloid of revolution. This observation is exploited 
in the following section. 

This calculation confirms the existence of such shapes, and gives us some 
idea of the extent of initial data needed in a complete characteristics calculation. 
Initial data should be available to tan 8 M 0.6 (or to Pr M 4), at least. 

The critical point is to be interpreted as corresponding to a limiting character- 
istic that is vertical. All characteristics from any part of the shock outboard of 
the critical point go farther away from the centre. From any point inboard of 
the critical point, one characteristic moves toward the centre and eventually 
intersects the axis r = 0. 

6. Parabolic approximation 

possibility of a further simplification. The substitution 
The closeness of the computed profile of figure 4 to a parabola suggests the 

tan8 = C,5r (6.1) 

(6-2) 

in (5.6) is made. At 8 = 0 we obtain the condition 

a-1 = +KO - K,C. 



328 Wallace D. Hayes 

With C equal to d tan at 8 = 0 this condition holds in general. To evaluate 
C we require (5.6) with (6.1) to hold a t  the critical point, a t  tan2B = &Kl. With 
(6.2) we obtain c = a-1, (6.3) 

a-1 = - W O  and then 
1 + K,' 

(6.4), 

In  the numerical example considered above this formula yields a-l = 0.1294, 
with an error of 2 %  from the computed value of 0.1269. 

We are led to inquire as to why this very simple calculation gives such a close 
result for the propagation constant. One reason is that the parameter &Kl = 0.207 
is appreciably smaller than unity. The suggestion is that (6.1) represents a power 
series truncated at one term, and that the smallness of $Kl should be used in 
justifying the truncation. 

Simply expanding (5.6) in powers of tan8  and substituting (6.1) leads to a 
formula different from (6.4), yielding a-l = 0.1362, with an error of 7%. Thus 
the key to the close result must lie in the particular choice of the method of 
accomplishing the truncation, with the second condition one applied at or near 
the critical point. We next develop a method for the general case based upon this 
idea. 

The shock shape is assumed to be given by 

x = xo ( t )  - $2, ( t )  r2, 

tan8 = -- = zl(t)r. 

(6.5) 

(6.6) 

and the slope accordingly by 
dz 
dr 

The quantity z1 has the dimensions of inverse distance, and is identified as 
Cp in the approximation (6.1) for the self-preserving solution. From (4.7) we 
obtain the area derivative 

with a indicating differentials along a ray. We have also 

The propagation velocity of the shock is obtained by differentiating (6.5) 
along a ray. The result is U = (2; - 3zir2) cos 8, 

for which (5.3) represents a special case. We differentiate (6.9) along a ray, to 
obtain 

__ - - (z: - &';r2 - xiru sin 8) cos 8 - sin 8 cos 8 (z;r + z1 U sin 8). (6.10) 

(6.9) 

au 1 
vat - v 

In  obtaining (6.10), the derivative of (6.6) along a ray was used. 
The shock propagation law (3.17) is now invoked, with the result 

z: - &z;r2- 249-77 sin 8- z1 U2 sin2 8 = -p2( 1 + cos2 8)z1 U2 +FU2. (6.11) 
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A t  8 = 0 this yields the equation 

4 = (Fo - 2p;z1)2;2, (6.12) 

which can be identified with (6.2) by identifying z,”/.z;2 as pa-’ through (5.4). 
In  (6.12), po and Fo designate the quantities p and F evaluated at (2, r )  = ( x o ,  0). 
If z1 can be considered as a known function of xo and z;, the solution of (6.12) 
gives the shock trajectory directly. 

To carry out the truncation, we intend to satisfy (6.11) approximately at  
tan 0 = po. Satisfying (6.11) exactly at  tan 8 = po leads to 

obtained by subtracting (6.11) from (6.12). To simplify this expression, weneglect 
z;p;lz;z; in comparison with unity, and drop the factor U2/x;2. The terms in 
p2-pi and F -Po we replace by terms obtained from Taylor series. We obtain 

FO 
22;  z, 2% 

thereby l z r  2121 

- - + 2 222 (1 - -) + .z12;2 (1 + 2p; - 

From either (6.13) or (6.14), if z; = 0 and p2 and F are constant, we obtain 

(6.15) 

Together with (6.12) this gives z,”/zh2 = x,, the same result as that of (6.3) and 
(6.4). Thus the approximate calculation for the self-preserving solution is in 
accord with our more general parabolic truncation. 

The quantities p2 and P are both functions of M and z. We may write 

from (6.9), and 

1 dU 
U d tan2 8 

d2 1 
dtan28 22, 
-=- 

(6.16) 

(6.17) 

from (6.5) and (6.6). We then have 

( dF ) o = ( H E )  (L-””),+(~-M”!!?E) ~ d2 

d tan2 8 8M ,, Udtan28 8M a& d tan2 8 

Similarly, we express 
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These expressions are to be substituted into (6.14). The two equations (6.12) and 
(6.14) form a fourth-order ordinary differential system for calculating the func- 
tions zo ( t )  and x1 (t) .  Initial data must include initial values of zo, zb, z1 and 2;. 

A very rough perturbation analysis of (6.14) in the strong shock range, with 
p: dropped in comparison with unity and z o ( t )  unperturbed, leads to a solution 

&, = A e-@’a + B e-%Fo+ (6.20) 
of the form 

This shows that the relaxation distance for a shock trajectory with respect to 
the approach of z1 to its asymptotic value is of the order of Fcl,  or of the order of 
6 scale heights. 

7. General case 
In  the general case, without axial symmetry, we must follow a procedure of 

type (iii)(as discussed at the beginning of $4). For completeness, we outline 
this procedure here. 

The time t ( x ,  y, z )  is chosen as the primary dependent variable. The surfaces 
of constant t are the wave fronts, for which the normal vector is 

The area integral is given (cf. (4.4)) by 

The velocity U is simply equal to IVtl-l, and the derivative along the ray is 

The derivative azpn is given by 

We now invoke the propagation law (3.17), and multiply through by IVtl. 
The result is the hyperbolic differential equation 

The Mach number M ,  on which p2 and F depend, is given simply by 

Equation (7.5) is closely analogous to the potential equation for three-dimen- 
sional steady supersonic flow. An essential difference is that (7.5) includes a 
source term, the one in F .  For more details on the analogy (without the source 
term) see Whitham (1959). The equivalent ‘Mach’ cone angle, as expected, is 
simply tan-lp. The quantity here which is analogous to the irrotational velocity 
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vector in steady supersonic flow is the inverse velocity vector Vt  = U-ln. The 
quantity here which is analogous to the square of the speed of sound is 

The quantity which is analogous to the square of the steady flow Mach number 
is 1 +,r2. 

This work was performed with the support of the U.S. Office of Naval Research, 
under Contract Nonr. 4913 (00), ARPA Order 215. 
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